
MATLAB on UL HPC
Checkpointing & parallel execution

UL High Performance Computing (HPC) Team
Valentin Plugaru

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu

1 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://www.uni.lu
http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials: https://github.com/ULHPC/tutorials

UL HPC School: https://hpc.uni.lu/hpc-school

This tutorial’s sources: https://github.com/ULHPC/tutorials/tree/devel/advanced/MATLAB2

2 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

https://github.com/ULHPC/
https://github.com/ULHPC/tutorials
https://hpc.uni.lu/hpc-school
https://github.com/ULHPC/tutorials/tree/devel/advanced/MATLAB2

Summary

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

3 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Pre-requisites

Summary

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

4 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Pre-requisites

Tutorial files
Sample MATLAB scripts used in the tutorial

download only the scripts:
(frontend)$> mkdir $HOME/matlab-tutorial2
(frontend)$> cd $HOME/matlab-tutorial2
(frontend)$> wget

https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example1.m

(frontend)$> wget
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example2.m

(frontend)$> wget
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/google_finance_data.m

or download the full repository and link to the MATLAB tutorial:
(frontend)$> git clone https://github.com/ULHPC/tutorials.git

(frontend)$> ln -s tutorials/advanced/MATLAB2/
$HOME/matlab-tutorial2

5 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example1.m
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example2.m
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/google_finance_data.m
https://github.com/ULHPC/tutorials.git

Pre-requisites

X Window System

In order to see locally the MATLAB graphical interface,
a package providing the X Window System is required:

on OS X: XQuartz http://xquartz.macosforge.org/landing/

on Windows: VcXsrv http://sourceforge.net/projects/vcxsrv/

Now you will be able to connect with X11 forwarding enabled:
on Linux & OS X:
$> ssh access-gaia.uni.lu -X

on Windows, with Putty
Connection → SSH → X11 → Enable X11 forwarding

6 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://xquartz.macosforge.org/landing/
http://sourceforge.net/projects/vcxsrv/

Objectives

Summary

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

7 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Objectives

Objectives of this PS

Better understand the usage of MATLAB on the UL HPC Platform

application-level checkpointing
↪→ using in-built MATLAB functions

taking advantage of some parallelization capabilities
↪→ use of parfor
↪→ use of GPU-enabled functions

adapting the parallel code with checkpoint/restart features

8 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://hpc.uni.lu

Objectives

Objectives of this PS

Better understand the usage of MATLAB on the UL HPC Platform

application-level checkpointing
↪→ using in-built MATLAB functions

taking advantage of some parallelization capabilities
↪→ use of parfor
↪→ use of GPU-enabled functions

adapting the parallel code with checkpoint/restart features

8 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://hpc.uni.lu

Objectives

Objectives of this PS

Better understand the usage of MATLAB on the UL HPC Platform

application-level checkpointing
↪→ using in-built MATLAB functions

taking advantage of some parallelization capabilities
↪→ use of parfor
↪→ use of GPU-enabled functions

adapting the parallel code with checkpoint/restart features

8 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://hpc.uni.lu

Checkpointing

Summary

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

9 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing

What is it?

Technique for adding fault tolerance to your application.
You adapt your code to (regularly) save a snapshot of the envi-
ronment (workspace), and restart execution from the snapshot
in case of failure.

Why make the effort to checkpoint?

because your code may take longer to execute than the
maximum walltime allowed

because losing (precious) hours or days of computation when
something fails may (should!) not be acceptable

10 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing

What is it?

Technique for adding fault tolerance to your application.
You adapt your code to (regularly) save a snapshot of the envi-
ronment (workspace), and restart execution from the snapshot
in case of failure.

Why make the effort to checkpoint?

because your code may take longer to execute than the
maximum walltime allowed

because losing (precious) hours or days of computation when
something fails may (should!) not be acceptable

10 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing pitfalls

checkpointing (too) often can be counterproductive
↪→ saving state in each loop may take longer than its actual

computing time
↪→ saving state incrementally can lead to fast exhaustion of your

$HOME space
↪→ in extreme cases can lead to platform instability – especially if

running parallel jobs!

checkpointing (especially parallel) code can be tricky

extra-care required if checkpointing simulations involving RNG
(e.g. Monte Carlo-based experiments)

ensure results consistency after you add checkpointing

11 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing pitfalls

checkpointing (too) often can be counterproductive
↪→ saving state in each loop may take longer than its actual

computing time
↪→ saving state incrementally can lead to fast exhaustion of your

$HOME space
↪→ in extreme cases can lead to platform instability – especially if

running parallel jobs!

checkpointing (especially parallel) code can be tricky

extra-care required if checkpointing simulations involving RNG
(e.g. Monte Carlo-based experiments)

ensure results consistency after you add checkpointing

11 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

12 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

12 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

12 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

12 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

When to trigger checkpointing?

when (loop) execution time is above threshold (e.g. 1h):
↪→ use tic and toc stopwatch functions, remember they can be

assigned to variables
↪→ use the clock function
↪→ add some randomness to the threshold if you run several instances

in parallel!

every n loop executions
↪→ remember that saving state takes time, depending on workspace

size & shared filesystem usage, and
↪→ if loops finish fast your code may be slowed down considerably
↪→ add some randomness to n if you run several instances in parallel!

13 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

When to trigger checkpointing?

when (loop) execution time is above threshold (e.g. 1h):
↪→ use tic and toc stopwatch functions, remember they can be

assigned to variables
↪→ use the clock function
↪→ add some randomness to the threshold if you run several instances

in parallel!

every n loop executions
↪→ remember that saving state takes time, depending on workspace

size & shared filesystem usage, and
↪→ if loops finish fast your code may be slowed down considerably
↪→ add some randomness to n if you run several instances in parallel!

13 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Checkpointing

Adding checkpointing to seq. code
example1.m: non-interactive script that shows:

the use of a stopwatch timer
how to use an external function (financial data retrieval)
how to use different plotting methods
how to export the plots in different graphic formats

Tasks to tackle with checkpointing

modify the script to download data for Fortune100 companies

add & test checkpointing to save state after each company’s
data is downloaded

more granular downloads - modify download period from 1 year
to 1 month, add & test checkpointing to save state after each
download

14 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Summary

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

15 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Reference documentation

Parallel Computing Toolbox http://www.mathworks.nl/help/distcomp/index.html

Parallel for-Loops (parfor)
http://www.mathworks.nl/help/distcomp/getting-started-with-parfor.html

GPU Computing http://www.mathworks.nl/discovery/matlab-gpu.html

16 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://www.mathworks.nl/help/distcomp/index.html
http://www.mathworks.nl/help/distcomp/getting-started-with-parfor.html
http://www.mathworks.nl/discovery/matlab-gpu.html

Parallelization

Accelerate the time to result
Option 1: Split input over several parallel, independent, MATLAB jobs

↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ we have 120 & 160 core nodes on which big problems can be tackled

Option 3: Use GPU-enabled functions that work on the gpuArray data type
↪→ require the code to be run on GPU nodes (subset of Gaia)
↪→ great speedup for some workloads
↪→ 295 in-built MATLAB functions work on gpuArray

including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the UL MATLAB license

17 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Accelerate the time to result
Option 1: Split input over several parallel, independent, MATLAB jobs

↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ we have 120 & 160 core nodes on which big problems can be tackled

Option 3: Use GPU-enabled functions that work on the gpuArray data type
↪→ require the code to be run on GPU nodes (subset of Gaia)
↪→ great speedup for some workloads
↪→ 295 in-built MATLAB functions work on gpuArray

including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the UL MATLAB license

17 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Accelerate the time to result
Option 1: Split input over several parallel, independent, MATLAB jobs

↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ we have 120 & 160 core nodes on which big problems can be tackled

Option 3: Use GPU-enabled functions that work on the gpuArray data type
↪→ require the code to be run on GPU nodes (subset of Gaia)
↪→ great speedup for some workloads
↪→ 295 in-built MATLAB functions work on gpuArray

including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the UL MATLAB license

17 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Accelerate the time to result
Option 1: Split input over several parallel, independent, MATLAB jobs

↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ we have 120 & 160 core nodes on which big problems can be tackled

Option 3: Use GPU-enabled functions that work on the gpuArray data type
↪→ require the code to be run on GPU nodes (subset of Gaia)
↪→ great speedup for some workloads
↪→ 295 in-built MATLAB functions work on gpuArray

including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the UL MATLAB license

17 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Speed up your seq. code
example2.m: non-interactive script that shows:

the serial execution of time consuming operations
↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

Number of cores

P
a
ra

lle
l
s
p
e
e
d
u
p

parfor−based parallel speedup vs serial execution

speedup

speedup with overhead

18 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Parallelization

Speed up your seq. code
example2.m: non-interactive script that shows:

the serial execution of time consuming operations
↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

Tasks to tackle

execute the script on regular vs GPU nodes (with different
GPUs)

increase # of iterations, matrix size

increase # of workers with/without changing the # of requested
cores

modify the script with other GPU-enabled functions

18 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Conclusion

Summary

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

19 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

Conclusion

What we’ve seen in this session

Checkpointing basics

Specific MATLAB instructions for checkpointing

Current MATLAB parallelization capabilities on UL HPC Platform

Perspectives

(incrementally) modify your own MATLAB code for fault
tolerance

parallelize your own tasks using parfor/GPU-enabled instructions

20 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

http://hpc.uni.lu

Thank you for your attention...

Questions?
Valentin Plugaru

Mail: valentin.plugaru@uni.lu
Office: MNO, E04 0445-070
Maison du Nombre
6, Avenue de la Fonte
L-4364 Esch-sur-Alzette

UL HPC Management Team
mail: hpc-sysadmins@uni.lu

1 Pre-requisites

2 Objectives

3 Checkpointing
Example 1 revisited

4 Parallelization
Example 2 revisited

5 Conclusion

21 / 21
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

N

mailto:valentin.plugaru@uni.lu
mailto:hpc-sysadmins@uni.lu

	Pre-requisites
	Objectives
	Checkpointing
	Example 1 revisited

	Parallelization
	Example 2 revisited

	Conclusion

