MATLAB on UL HPC

Checkpointing & parallel execution

UL High Performance Computing (HPC) Team

Valentin Plugaru

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu

UNIVERSITE DU
LUXEMBOURG

1/21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC
A

http://www.uni.lu
http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials: https://github.com/ULHPC/tutorials
UL HPC SChOOI: https://hpc.uni.lu/hpc-school

Th i st utori a I ' S SOUIFCES: nhttps://github.com/ULHPC/tutorials/tree/devel/advanced/MATLAB2

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 2/21

A

https://github.com/ULHPC/
https://github.com/ULHPC/tutorials
https://hpc.uni.lu/hpc-school
https://github.com/ULHPC/tutorials/tree/devel/advanced/MATLAB2

Summary

o Pre-requisites
e Objectives

e Checkpointing
Example 1 revisited

e Parallelization
Example 2 revisited

e Conclusion

UNIVERSITE DU
LUXEMBOURG

3/21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC
A

o Pre-requisites

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 421

A

Sample MATLAB scripts used in the tutorial

@ download only the scripts:

(frontend)$> mkdir $HOME/matlab-tutorial2

(frontend)$> cd $HOME/matlab-tutorial2

(frontend)$> wget
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/examplel.m

(frontend)$> wWwget
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example2.m

(frontend)$> wget
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/google_finance_data.m

@ or download the full repository and link to the MATLAB tutorial:

(frontend)$> git clone https://github.com/ULHPC/tutorials.git
(frontend)$> 1ln —-s tutorials/advanced/MATLAB2/
$HOME/matlab-tutorial2

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 5 / o1
A

https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example1.m
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/example2.m
https://raw.github.com/ULHPC/tutorials/devel/advanced/MATLAB2/code/google_finance_data.m
https://github.com/ULHPC/tutorials.git

E| X Window System

In order to see locally the MATLAB graphical interface,
a package providing the X Window System is required:

e on OS X: XQUartZ http://xquartz.macosforge.org/landing/

o on Windows: VcXsrv http://sourceforge.net/projects/vcxsrv/

Now you will be able to connect with X11 forwarding enabled:

e on Linux & OS X:

$> ssh access-gaia.uni.lu -X

o on Windows, with Putty
Connection — SSH — X11 — Enable X11 forwarding

UNIVERSITE DU
LUXEMBOURG

6/21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC
A

http://xquartz.macosforge.org/landing/
http://sourceforge.net/projects/vcxsrv/

e Objectives

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 7/21

A

=]
B
<
@ ypcfl ¥

@201 Objectives of this PS

Better understand the usage of MATLAB on the UL HPC Platform

o application-level checkpointing
< using in-built MATLAB functions

UNIVERSITE DU
LUXEMBOURG

8/21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC
A

http://hpc.uni.lu

Better understand the usage of MATLAB on the UL HPC Platform

o application-level checkpointing
< using in-built MATLAB functions

< use of parfor
< use of GPU-enabled functions

o taking advantage of some parallelization capabilities

Valentin Plugaru (University of Luxembourg)

MATLAB on UL HPC

A

UNIVERSITE DU
LUXEMBOURG

8/21

http://hpc.uni.lu

' P

&' Hpc

w1 Objectives of this PS

Better understand the usage of MATLAB on the UL HPC Platform

o application-level checkpointing
< using in-built MATLAB functions

o taking advantage of some parallelization capabilities

< use of parfor
< use of GPU-enabled functions

o adapting the parallel code with checkpoint/restart features

UNIVERSITE DU
LUXEMBOURG

8 /21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

A

http://hpc.uni.lu

e Checkpointing
Example 1 revisited

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 021

A

What is it?

Technique for adding fault tolerance to your application.

You adapt your code to (regularly) save a snapshot of the envi-
ronment (workspace), and restart execution from the snapshot

in case of failure.

Valentin Plugaru (University of Luxembourg)

MATLAB on UL HPC

UNIVERSITE DU
LUXEMBOURG

10 /21

' P

&' Hpc
SCHooL

#i[1 Checkpointing

What is it?

Technique for adding fault tolerance to your application.

You adapt your code to (regularly) save a snapshot of the envi-
ronment (workspace), and restart execution from the snapshot
in case of failure.

Why make the effort to checkpoint?

@ because your code may take longer to execute than the
maximum walltime allowed

@ because losing (precious) hours or days of computation when
something fails may (should!) not be acceptable

UNIVERSITE DU
LUXEMBOURG

MATLAB on UL HPC 10/021

o checkpointing (too) often can be counterproductive

— saving state in each loop may take longer than its actual
computing time

— saving state incrementally can lead to fast exhaustion of your
$HOME space

< in extreme cases can lead to platform instability — especially if
running parallel jobs!

Valentin Plugaru

(University of Luxembourg) MATLAB on UL HPC

UNIVERSITE DU
LUXEMBOURG

11 /21

wfe

ULl 2
s
ScHooL

#[1 Checkpointing pitfalls

o checkpointing (too) often can be counterproductive
— saving state in each loop may take longer than its actual
computing time
— saving state incrementally can lead to fast exhaustion of your
$HOME space
< in extreme cases can lead to platform instability — especially if
running parallel jobs!

o checkpointing (especially parallel) code can be tricky

o extra-care required if checkpointing simulations involving RNG
(e.g. Monte Carlo-based experiments)

o ensure results consistency after you add checkpointing

UNIVERSITE DU
LUXEMBOURG

MATLAB on UL HPC 11/21

ScHooL

1 Checkpointing basics

@ Check that a checkpoint file exists: exist(’save.mat’, file’)

@ |If it exists, restore workspace data from it: load(’save.mat’)

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 12/21

@ Check that a checkpoint file exists: exist(’save.mat’, file’)

@ |If it exists, restore workspace data from it: load(’save.mat’)

@ During computing steps, use control variables to direct (re)start of
computation

UNIVERSITE DU
LUXEMBOURG

12 /21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

@ Check that a checkpoint file exists: exist(’save.mat’, file’)

@ If it exists, restore workspace data from it: load(’save.mat?’)

@ During computing steps, use control variables to direct (re)start of
computation

@ Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

— save full workspace state: save(’save.tmp’)
—» save partial state: save(’save.tmp’, ’varl’, ’var2’)
UNIVERSITE DU
LUXEMBOURG
Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC /
12 /21

HP!
SCHooL

1 Checkpointing basics

Check that a checkpoint file exists: exist(’save.mat’,’file’)
If it exists, restore workspace data from it: load(’save.mat?’)

@ During computing steps, use control variables to direct (re)start of
computation

@ Every n loops, or if execution time (in loop or since startup) is

above threshold, checkpoint:

— save full workspace state: save(’save.tmp’)
— save partial state: save(’save.tmp’, ’varl’, ’var2’)
@ Rename state file to final name: system(’mv save.tmp save.mat’)

< this process ensures that in case of failure during checkpointing,
next execution doesn't try to restart from incomplete state

UNIVERSITE DU
LUXEMBOURG

MATLAB on UL HPC 12 /021

@ when (loop) execution time is above threshold (e.g. 1h):
< use tic and toc stopwatch functions, remember they can be
assigned to variables
< use the clock function
< add some randomness to the threshold if you run several instances
in parallel!

UNIVERSITE DU
LUXEMBOURG

13 /21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

HPC

5901 When to trigger checkpointing?

o when (loop) execution time is above threshold (e.g. 1h):
< use tic and toc stopwatch functions, remember they can be
assigned to variables

use the clock function
add some randomness to the threshold if you run several instances

in parallel!

—
—

@ every n loop executions
— remember that saving state takes time, depending on workspace
size & shared filesystem usage, and
— if loops finish fast your code may be slowed down considerably
< add some randomness to n if you run several instances in parallel!

UNIVERSITE DU
LUXEMBOURG

13 /21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC

&' Hpc
SCHooL

1 Adding checkpointing to seq. code
examplel.m: non-interactive script that shows:

o the use of a stopwatch timer

o how to use an external function (financial data retrieval)

@ how to use different plotting methods

@ how to export the plots in different graphic formats

Tasks to tackle with checkpointing

o modify the script to download data for Fortunel00 companies

o add & test checkpointing to save state after each company'’s

data is downloaded

e more granular downloads - modify download period from 1 year
to 1 month, add & test checkpointing to save state after each

download

MATLAB on UL HPC

UNIVERSITE DU
LUXEMBOURG

14 / 21

a Parallelization
Example 2 revisited

Valentin Plugaru (University of Luxembourg)

UNIVERSITE DU
LUXEMBOURG

MATLAB on UL HPC

15 /21

m
5

@' HpPc

wet [1 Reference documentation

o Parallel Computing Toolbox http://www.mathworks.nl/help/distcomp/index.html

o Parallel for-Loops (parfor)

http://www.mathworks.nl/help/distcomp/getting-started-with-parfor.html

o GPU Com pUtI ng http://www.mathworks.nl/discovery/matlab-gpu.html

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC 16/ 21

http://www.mathworks.nl/help/distcomp/index.html
http://www.mathworks.nl/help/distcomp/getting-started-with-parfor.html
http://www.mathworks.nl/discovery/matlab-gpu.html

e 1 Accelerate the time to result

Option 1: Split input over several parallel, independent, MATLAB jobs
— great if it's possible (embarrassingly parallel problem)

UNIVERSITE DU
LUXEMBOURG

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC /21
A

Option 1: Split input over several parallel, independent, MATLAB jobs
— great if it's possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
< single node only
< we have 120 & 160 core nodes on which big problems can be tackled

UNIVERSITE DU
LUXEMBOURG

17 /21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC
A

uL
@' HPc

SCHooL

a1 Accelerate the time to result

Option 1: Split input over several parallel, independent, MATLAB jobs
— great if it's possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
— single node only
< we have 120 & 160 core nodes on which big problems can be tackled

Option 3: Use GPU-enabled functions that work on the gpuArray data type
< require the code to be run on GPU nodes (subset of Gaia)
< great speedup for some workloads
— 295 in-built MATLAB functions work on gpuArray

including discrete Fourier transform, matrix multiplication, left matrix division

UNIVERSITE DU
. LUXEMBOURG
Valentin Plugaru (University of Luxembourg)

AMATLAB on UL HPC /21

uL
@' HPc

SCHooL

Accelerate the time to result

Option 1: Split input over several parallel, independent, MATLAB jobs
— great if it's possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
— single node only
< we have 120 & 160 core nodes on which big problems can be tackled

Option 3: Use GPU-enabled functions that work on the gpuArray data type
< require the code to be run on GPU nodes (subset of Gaia)
< great speedup for some workloads
— 295 in-built MATLAB functions work on gpuArray

including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
— allows multi-node parallel execution .
< not yet part of the UL MATLAB license I""'“

UNIVERSITE DU
LUXEMBOURG

AMATLAB on UL HPC 17 /21

O Speed up your seq. code

example2.m: non-interactive script that shows:

@ the serial execution of time consuming operations

< the parallel execution and relative speedup vs serial execution
— setting the # of parallel threads through environment variables

— GPU-based parallel execution

parfor-based parallel speedup vs serial execution

Paralel speedup

MATLAB on UL HPC

A

HPC

SCHooL

1 Speed up your seq. code

example2.m: non-interactive script that shows:

o the serial execution of time consuming operations

— the parallel execution and relative speedup vs serial execution
< setting the # of parallel threads through environment variables
— GPU-based parallel execution

Tasks to tackle

o execute the script on regular vs GPU nodes (with different
GPUs)

@ increase # of iterations, matrix size

o increase # of workers with/without changing the # of requested
cores

o modify the script with other GPU-enabled functions

MATLAB on UL HPC

A

UNIVERSITE DU
LUXEMBOURG

18 /21

e Conclusion

Valentin Plugaru (University of Luxembourg)

UNIVERSITE DU
LUXEMBOURG

MATLAB on UL HPC 19/21

A

o Checkpointing basics

o Specific MATLAB instructions for checkpointing
o Current MATLAB parallelization capabilities on UL HPC Platform

Perspectives

o (incrementally) modify your own MATLAB code for fault
tolerance

o parallelize your own tasks using parfor/GPU-enabled instructions

UNIVERSITE DU
LUXEMBOURG

20 / 21

Valentin Plugaru (University of Luxembourg) MATLAB on UL HPC
A

http://hpc.uni.lu

Valentin Plugaru
Mail: valentin.plugaru@uni.lu
Office: MNO, E04 0445-070
Maison du Nombre
6, Avenue de la Fonte
L-4364 Esch-sur-Alzette

UL HPC Management Team
mail: hpc-sysadmins@uni.lu

o Pre-requisites
e Objectives
e Checkpointing

Example 1 revisited

e Parallelization

Example 2 revisited

e Conclusion

Valentin Plugaru (University of Luxembourg)

MATLAB on UL HPC
A

UNIVERSITE DU
LUXEMBOURG

21 /21

mailto:valentin.plugaru@uni.lu
mailto:hpc-sysadmins@uni.lu

	Pre-requisites
	Objectives
	Checkpointing
	Example 1 revisited

	Parallelization
	Example 2 revisited

	Conclusion

